▶4年間の学びのステップ

教養教育に ついては P.96、97へ

1年次

機械づくりの 楽しさと難しさを 体感します

機械工学の基礎となる数学、物理を学びます。「ものづくり基礎演習」と「ものづくり演習」では、ロボットづくりに挑戦。基礎的な製図や加工、製造プロセスを体験することで、1年次からものづくりの楽しさと難しさに触れます。

2年次

機械工学の基礎となる 四大力学、製図・設計を 学びます

本格的な機械工学の授業が始まります。理論と 演習の両面から四大力学を理解するとともに、 ものづくりの共通言語として不可欠な設計や製 図を専門的に学び、3年次からの発展的な学び につなげます。

3年次

■機械工学実験1

機械制御や 加工などを学び、 研究室を選びます

機械制御や加工技術など、発展的な技術を学びます。 さまざまな機械の原理を理解するとともに、実習を 通してその扱い方にも習熟します。さらに研究室に 所属し、各自の興味・関心を深めます。

4年次

卒業研究を通して、 機械エンジニアとしての 総合力を高めます

企業との共同研究などを通して、社会から求められる課題解決に実践的に取り組みます。研究活動を通して、データ処理、文書作成、プレゼンテーションなどのスキルも高め、機械エンジニアとしての総合力を磨きます。

	科目	1セメスター	2セメスター	3セメスター	4セメスター		5セメスター	6セメスター 研究室決定	7セメスター	8セメスター	
専門科目	専門	■数学基礎 ■物理学基礎 ■化学基礎 ■線形代数	■微分積分学 物理学応用		確率統計						
	養 礎 科 目	■化学実験 ■物理学実験		■化学実験 ■物理学実験					注目の研究!		
	専門基幹科目	■ものづくり基礎演習	■ものづくり演習 ■機械工学概論 ■工業力学 機械材料 機構学	工業数学 基礎材料力学 基礎機械設計 基礎機械製図 基礎機械/ 基礎機械/ 基礎機械/ 基礎機械/ 基礎機械/ 基礎機械/	■生産加工学				車両の運動と制御高効率エネルギー	 デジタルテクノロジーによるメカトロニクス技術 車両の運動と制御に関する研究 高効率エネルギー技術に関する材料科学・材料強度 運動伝達用プラスチック機械要素の開発と設計 他 	
	専門展開科目			■流れ学	■材料力学 機械力学 ■熱力学 ■機械設計 ■機械製図 計測工学	振制 応 応 技機 工 数	5用材料力学 長動工学 別御工学 5用熱力学 5用熱力学 5用流 花学 技術英語 技術の技術史 位 作解析 位 作解析 で の 用機械設計製図	構造力学 材料強度学 自動制御 流体力学 ■CAD演習 環境工学 ■技術者倫理 ■先端機械工学 ■機械工学 ■機械工学 ■機械工学	エネルギー工学 ■ゼミナール1 ■卒業研究	■ゼミナール2	